(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
S tuples:
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
K tuples:none
Defined Rule Symbols:
active, mark, f, g, h
Defined Pair Symbols:
ACTIVE, MARK, F, G, H
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
We considered the (Usable) Rules:
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
h(active(z0)) → h(z0)
h(mark(z0)) → h(z0)
active(f(z0)) → mark(g(h(f(z0))))
f(active(z0)) → f(z0)
f(mark(z0)) → f(z0)
And the Tuples:
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(MARK(x1)) = x1
POL(active(x1)) = 0
POL(c(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c1(x1, x2, x3)) = x1 + x2 + x3
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(f(x1)) = [4] + x1
POL(g(x1)) = 0
POL(h(x1)) = x1
POL(mark(x1)) = 0
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
S tuples:
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
K tuples:
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
Defined Rule Symbols:
active, mark, f, g, h
Defined Pair Symbols:
ACTIVE, MARK, F, G, H
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
We considered the (Usable) Rules:
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
h(active(z0)) → h(z0)
h(mark(z0)) → h(z0)
active(f(z0)) → mark(g(h(f(z0))))
f(active(z0)) → f(z0)
f(mark(z0)) → f(z0)
And the Tuples:
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(MARK(x1)) = [2]x1
POL(active(x1)) = [4] + [4]x1
POL(c(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c1(x1, x2, x3)) = x1 + x2 + x3
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(f(x1)) = [2] + x1
POL(g(x1)) = 0
POL(h(x1)) = [1] + [4]x1
POL(mark(x1)) = 0
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
S tuples:
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
K tuples:
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
Defined Rule Symbols:
active, mark, f, g, h
Defined Pair Symbols:
ACTIVE, MARK, F, G, H
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9
(7) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
S tuples:
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
K tuples:
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
Defined Rule Symbols:
active, mark, f, g, h
Defined Pair Symbols:
ACTIVE, MARK, F, G, H
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(mark(z0)) → c4(F(z0))
We considered the (Usable) Rules:
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
h(active(z0)) → h(z0)
h(mark(z0)) → h(z0)
active(f(z0)) → mark(g(h(f(z0))))
f(active(z0)) → f(z0)
f(mark(z0)) → f(z0)
And the Tuples:
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [4] + x1
POL(F(x1)) = [4] + [2]x1
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(MARK(x1)) = [4] + [5]x1
POL(active(x1)) = x1
POL(c(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c1(x1, x2, x3)) = x1 + x2 + x3
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(f(x1)) = [4] + [3]x1
POL(g(x1)) = 0
POL(h(x1)) = [4] + [4]x1
POL(mark(x1)) = [1] + [2]x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
S tuples:
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
K tuples:
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
F(mark(z0)) → c4(F(z0))
Defined Rule Symbols:
active, mark, f, g, h
Defined Pair Symbols:
ACTIVE, MARK, F, G, H
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
H(mark(z0)) → c8(H(z0))
We considered the (Usable) Rules:
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
h(active(z0)) → h(z0)
h(mark(z0)) → h(z0)
active(f(z0)) → mark(g(h(f(z0))))
f(active(z0)) → f(z0)
f(mark(z0)) → f(z0)
And the Tuples:
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = x1
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = x1
POL(MARK(x1)) = [3]x1
POL(active(x1)) = x1
POL(c(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c1(x1, x2, x3)) = x1 + x2 + x3
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(f(x1)) = [3] + [4]x1
POL(g(x1)) = 0
POL(h(x1)) = [4] + [5]x1
POL(mark(x1)) = [1] + [2]x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
S tuples:
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(active(z0)) → c9(H(z0))
K tuples:
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
F(mark(z0)) → c4(F(z0))
H(mark(z0)) → c8(H(z0))
Defined Rule Symbols:
active, mark, f, g, h
Defined Pair Symbols:
ACTIVE, MARK, F, G, H
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9
(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
H(active(z0)) → c9(H(z0))
We considered the (Usable) Rules:
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
h(active(z0)) → h(z0)
h(mark(z0)) → h(z0)
active(f(z0)) → mark(g(h(f(z0))))
f(active(z0)) → f(z0)
f(mark(z0)) → f(z0)
And the Tuples:
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [1] + x1
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = x1
POL(MARK(x1)) = [1] + [3]x1
POL(active(x1)) = [1] + x1
POL(c(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c1(x1, x2, x3)) = x1 + x2 + x3
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(f(x1)) = [4] + [4]x1
POL(g(x1)) = 0
POL(h(x1)) = [5] + [5]x1
POL(mark(x1)) = [1] + [2]x1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
S tuples:
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
K tuples:
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
F(mark(z0)) → c4(F(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
Defined Rule Symbols:
active, mark, f, g, h
Defined Pair Symbols:
ACTIVE, MARK, F, G, H
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9
(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(active(z0)) → c5(F(z0))
We considered the (Usable) Rules:
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
h(active(z0)) → h(z0)
h(mark(z0)) → h(z0)
active(f(z0)) → mark(g(h(f(z0))))
f(active(z0)) → f(z0)
f(mark(z0)) → f(z0)
And the Tuples:
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [3] + x1
POL(F(x1)) = x1
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(MARK(x1)) = [5]x1
POL(active(x1)) = [2] + x1
POL(c(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c1(x1, x2, x3)) = x1 + x2 + x3
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(f(x1)) = [4] + [4]x1
POL(g(x1)) = [1]
POL(h(x1)) = [4] + [4]x1
POL(mark(x1)) = [1] + [3]x1
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
S tuples:
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
K tuples:
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
F(mark(z0)) → c4(F(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
F(active(z0)) → c5(F(z0))
Defined Rule Symbols:
active, mark, f, g, h
Defined Pair Symbols:
ACTIVE, MARK, F, G, H
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
f(
z0)) →
c(
MARK(
g(
h(
f(
z0)))),
G(
h(
f(
z0))),
H(
f(
z0)),
F(
z0)) by
ACTIVE(f(x0)) → c(MARK(g(h(f(x0)))), F(x0))
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
ACTIVE(f(x0)) → c(MARK(g(h(f(x0)))), F(x0))
S tuples:
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
K tuples:
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
F(mark(z0)) → c4(F(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
F(active(z0)) → c5(F(z0))
Defined Rule Symbols:
active, mark, f, g, h
Defined Pair Symbols:
MARK, F, G, H, ACTIVE
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c
(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
MARK(
f(
z0)) →
c1(
ACTIVE(
f(
mark(
z0))),
F(
mark(
z0)),
MARK(
z0)) by
MARK(f(z0)) → c1(ACTIVE(f(z0)), F(mark(z0)), MARK(z0))
MARK(f(f(z0))) → c1(ACTIVE(f(active(f(mark(z0))))), F(mark(f(z0))), MARK(f(z0)))
MARK(f(g(z0))) → c1(ACTIVE(f(active(g(z0)))), F(mark(g(z0))), MARK(g(z0)))
MARK(f(h(z0))) → c1(ACTIVE(f(active(h(mark(z0))))), F(mark(h(z0))), MARK(h(z0)))
MARK(f(x0)) → c1
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
ACTIVE(f(x0)) → c(MARK(g(h(f(x0)))), F(x0))
MARK(f(z0)) → c1(ACTIVE(f(z0)), F(mark(z0)), MARK(z0))
MARK(f(f(z0))) → c1(ACTIVE(f(active(f(mark(z0))))), F(mark(f(z0))), MARK(f(z0)))
MARK(f(g(z0))) → c1(ACTIVE(f(active(g(z0)))), F(mark(g(z0))), MARK(g(z0)))
MARK(f(h(z0))) → c1(ACTIVE(f(active(h(mark(z0))))), F(mark(h(z0))), MARK(h(z0)))
MARK(f(x0)) → c1
S tuples:
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
K tuples:
MARK(f(z0)) → c1(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
ACTIVE(f(z0)) → c(MARK(g(h(f(z0)))), G(h(f(z0))), H(f(z0)), F(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
F(mark(z0)) → c4(F(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
F(active(z0)) → c5(F(z0))
Defined Rule Symbols:
active, mark, f, g, h
Defined Pair Symbols:
MARK, F, G, H, ACTIVE
Compound Symbols:
c2, c3, c4, c5, c6, c7, c8, c9, c, c1, c1
(21) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
MARK(f(x0)) → c1
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
ACTIVE(f(x0)) → c(MARK(g(h(f(x0)))), F(x0))
MARK(f(z0)) → c1(ACTIVE(f(z0)), F(mark(z0)), MARK(z0))
MARK(f(f(z0))) → c1(ACTIVE(f(active(f(mark(z0))))), F(mark(f(z0))), MARK(f(z0)))
MARK(f(g(z0))) → c1(ACTIVE(f(active(g(z0)))), F(mark(g(z0))), MARK(g(z0)))
MARK(f(h(z0))) → c1(ACTIVE(f(active(h(mark(z0))))), F(mark(h(z0))), MARK(h(z0)))
S tuples:
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
K tuples:
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
F(mark(z0)) → c4(F(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
F(active(z0)) → c5(F(z0))
Defined Rule Symbols:
active, mark, f, g, h
Defined Pair Symbols:
MARK, F, G, H, ACTIVE
Compound Symbols:
c2, c3, c4, c5, c6, c7, c8, c9, c, c1
(23) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
MARK(
g(
z0)) →
c2(
ACTIVE(
g(
z0)),
G(
z0)) by
MARK(g(x0)) → c2(G(x0))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
ACTIVE(f(x0)) → c(MARK(g(h(f(x0)))), F(x0))
MARK(f(z0)) → c1(ACTIVE(f(z0)), F(mark(z0)), MARK(z0))
MARK(f(f(z0))) → c1(ACTIVE(f(active(f(mark(z0))))), F(mark(f(z0))), MARK(f(z0)))
MARK(f(g(z0))) → c1(ACTIVE(f(active(g(z0)))), F(mark(g(z0))), MARK(g(z0)))
MARK(f(h(z0))) → c1(ACTIVE(f(active(h(mark(z0))))), F(mark(h(z0))), MARK(h(z0)))
MARK(g(x0)) → c2(G(x0))
S tuples:
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
K tuples:
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
F(mark(z0)) → c4(F(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
F(active(z0)) → c5(F(z0))
Defined Rule Symbols:
active, mark, f, g, h
Defined Pair Symbols:
MARK, F, G, H, ACTIVE
Compound Symbols:
c3, c4, c5, c6, c7, c8, c9, c, c1, c2
(25) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
MARK(
h(
z0)) →
c3(
ACTIVE(
h(
mark(
z0))),
H(
mark(
z0)),
MARK(
z0)) by
MARK(h(z0)) → c3(ACTIVE(h(z0)), H(mark(z0)), MARK(z0))
MARK(h(f(z0))) → c3(ACTIVE(h(active(f(mark(z0))))), H(mark(f(z0))), MARK(f(z0)))
MARK(h(g(z0))) → c3(ACTIVE(h(active(g(z0)))), H(mark(g(z0))), MARK(g(z0)))
MARK(h(h(z0))) → c3(ACTIVE(h(active(h(mark(z0))))), H(mark(h(z0))), MARK(h(z0)))
MARK(h(x0)) → c3
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
ACTIVE(f(x0)) → c(MARK(g(h(f(x0)))), F(x0))
MARK(f(z0)) → c1(ACTIVE(f(z0)), F(mark(z0)), MARK(z0))
MARK(f(f(z0))) → c1(ACTIVE(f(active(f(mark(z0))))), F(mark(f(z0))), MARK(f(z0)))
MARK(f(g(z0))) → c1(ACTIVE(f(active(g(z0)))), F(mark(g(z0))), MARK(g(z0)))
MARK(f(h(z0))) → c1(ACTIVE(f(active(h(mark(z0))))), F(mark(h(z0))), MARK(h(z0)))
MARK(g(x0)) → c2(G(x0))
MARK(h(z0)) → c3(ACTIVE(h(z0)), H(mark(z0)), MARK(z0))
MARK(h(f(z0))) → c3(ACTIVE(h(active(f(mark(z0))))), H(mark(f(z0))), MARK(f(z0)))
MARK(h(g(z0))) → c3(ACTIVE(h(active(g(z0)))), H(mark(g(z0))), MARK(g(z0)))
MARK(h(h(z0))) → c3(ACTIVE(h(active(h(mark(z0))))), H(mark(h(z0))), MARK(h(z0)))
MARK(h(x0)) → c3
S tuples:
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
K tuples:
MARK(h(z0)) → c3(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
MARK(g(z0)) → c2(ACTIVE(g(z0)), G(z0))
F(mark(z0)) → c4(F(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
F(active(z0)) → c5(F(z0))
Defined Rule Symbols:
active, mark, f, g, h
Defined Pair Symbols:
F, G, H, ACTIVE, MARK
Compound Symbols:
c4, c5, c6, c7, c8, c9, c, c1, c2, c3, c3
(27) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
MARK(h(x0)) → c3
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
ACTIVE(f(x0)) → c(MARK(g(h(f(x0)))), F(x0))
MARK(f(z0)) → c1(ACTIVE(f(z0)), F(mark(z0)), MARK(z0))
MARK(f(f(z0))) → c1(ACTIVE(f(active(f(mark(z0))))), F(mark(f(z0))), MARK(f(z0)))
MARK(f(g(z0))) → c1(ACTIVE(f(active(g(z0)))), F(mark(g(z0))), MARK(g(z0)))
MARK(f(h(z0))) → c1(ACTIVE(f(active(h(mark(z0))))), F(mark(h(z0))), MARK(h(z0)))
MARK(g(x0)) → c2(G(x0))
MARK(h(z0)) → c3(ACTIVE(h(z0)), H(mark(z0)), MARK(z0))
MARK(h(f(z0))) → c3(ACTIVE(h(active(f(mark(z0))))), H(mark(f(z0))), MARK(f(z0)))
MARK(h(g(z0))) → c3(ACTIVE(h(active(g(z0)))), H(mark(g(z0))), MARK(g(z0)))
MARK(h(h(z0))) → c3(ACTIVE(h(active(h(mark(z0))))), H(mark(h(z0))), MARK(h(z0)))
S tuples:
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
K tuples:
F(mark(z0)) → c4(F(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
F(active(z0)) → c5(F(z0))
Defined Rule Symbols:
active, mark, f, g, h
Defined Pair Symbols:
F, G, H, ACTIVE, MARK
Compound Symbols:
c4, c5, c6, c7, c8, c9, c, c1, c2, c3
(29) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
MARK(
f(
f(
z0))) →
c1(
ACTIVE(
f(
active(
f(
mark(
z0))))),
F(
mark(
f(
z0))),
MARK(
f(
z0))) by
MARK(f(f(x0))) → c1(ACTIVE(f(f(mark(x0)))), F(mark(f(x0))), MARK(f(x0)))
MARK(f(f(x0))) → c1(ACTIVE(f(mark(g(h(f(mark(x0))))))), F(mark(f(x0))), MARK(f(x0)))
MARK(f(f(z0))) → c1(ACTIVE(f(active(f(z0)))), F(mark(f(z0))), MARK(f(z0)))
MARK(f(f(f(z0)))) → c1(ACTIVE(f(active(f(active(f(mark(z0))))))), F(mark(f(f(z0)))), MARK(f(f(z0))))
MARK(f(f(g(z0)))) → c1(ACTIVE(f(active(f(active(g(z0)))))), F(mark(f(g(z0)))), MARK(f(g(z0))))
MARK(f(f(h(z0)))) → c1(ACTIVE(f(active(f(active(h(mark(z0))))))), F(mark(f(h(z0)))), MARK(f(h(z0))))
MARK(f(f(x0))) → c1(F(mark(f(x0))))
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
ACTIVE(f(x0)) → c(MARK(g(h(f(x0)))), F(x0))
MARK(f(z0)) → c1(ACTIVE(f(z0)), F(mark(z0)), MARK(z0))
MARK(f(g(z0))) → c1(ACTIVE(f(active(g(z0)))), F(mark(g(z0))), MARK(g(z0)))
MARK(f(h(z0))) → c1(ACTIVE(f(active(h(mark(z0))))), F(mark(h(z0))), MARK(h(z0)))
MARK(g(x0)) → c2(G(x0))
MARK(h(z0)) → c3(ACTIVE(h(z0)), H(mark(z0)), MARK(z0))
MARK(h(f(z0))) → c3(ACTIVE(h(active(f(mark(z0))))), H(mark(f(z0))), MARK(f(z0)))
MARK(h(g(z0))) → c3(ACTIVE(h(active(g(z0)))), H(mark(g(z0))), MARK(g(z0)))
MARK(h(h(z0))) → c3(ACTIVE(h(active(h(mark(z0))))), H(mark(h(z0))), MARK(h(z0)))
MARK(f(f(x0))) → c1(ACTIVE(f(f(mark(x0)))), F(mark(f(x0))), MARK(f(x0)))
MARK(f(f(x0))) → c1(ACTIVE(f(mark(g(h(f(mark(x0))))))), F(mark(f(x0))), MARK(f(x0)))
MARK(f(f(z0))) → c1(ACTIVE(f(active(f(z0)))), F(mark(f(z0))), MARK(f(z0)))
MARK(f(f(f(z0)))) → c1(ACTIVE(f(active(f(active(f(mark(z0))))))), F(mark(f(f(z0)))), MARK(f(f(z0))))
MARK(f(f(g(z0)))) → c1(ACTIVE(f(active(f(active(g(z0)))))), F(mark(f(g(z0)))), MARK(f(g(z0))))
MARK(f(f(h(z0)))) → c1(ACTIVE(f(active(f(active(h(mark(z0))))))), F(mark(f(h(z0)))), MARK(f(h(z0))))
MARK(f(f(x0))) → c1(F(mark(f(x0))))
S tuples:
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
K tuples:
F(mark(z0)) → c4(F(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
F(active(z0)) → c5(F(z0))
Defined Rule Symbols:
active, mark, f, g, h
Defined Pair Symbols:
F, G, H, ACTIVE, MARK
Compound Symbols:
c4, c5, c6, c7, c8, c9, c, c1, c2, c3, c1
(31) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
MARK(
f(
g(
z0))) →
c1(
ACTIVE(
f(
active(
g(
z0)))),
F(
mark(
g(
z0))),
MARK(
g(
z0))) by
MARK(f(g(x0))) → c1(ACTIVE(f(g(x0))), F(mark(g(x0))), MARK(g(x0)))
MARK(f(g(x0))) → c1(F(mark(g(x0))), MARK(g(x0)))
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(g(h(f(z0))))
mark(f(z0)) → active(f(mark(z0)))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
F(mark(z0)) → c4(F(z0))
F(active(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
ACTIVE(f(x0)) → c(MARK(g(h(f(x0)))), F(x0))
MARK(f(z0)) → c1(ACTIVE(f(z0)), F(mark(z0)), MARK(z0))
MARK(f(h(z0))) → c1(ACTIVE(f(active(h(mark(z0))))), F(mark(h(z0))), MARK(h(z0)))
MARK(g(x0)) → c2(G(x0))
MARK(h(z0)) → c3(ACTIVE(h(z0)), H(mark(z0)), MARK(z0))
MARK(h(f(z0))) → c3(ACTIVE(h(active(f(mark(z0))))), H(mark(f(z0))), MARK(f(z0)))
MARK(h(g(z0))) → c3(ACTIVE(h(active(g(z0)))), H(mark(g(z0))), MARK(g(z0)))
MARK(h(h(z0))) → c3(ACTIVE(h(active(h(mark(z0))))), H(mark(h(z0))), MARK(h(z0)))
MARK(f(f(x0))) → c1(ACTIVE(f(f(mark(x0)))), F(mark(f(x0))), MARK(f(x0)))
MARK(f(f(x0))) → c1(ACTIVE(f(mark(g(h(f(mark(x0))))))), F(mark(f(x0))), MARK(f(x0)))
MARK(f(f(z0))) → c1(ACTIVE(f(active(f(z0)))), F(mark(f(z0))), MARK(f(z0)))
MARK(f(f(f(z0)))) → c1(ACTIVE(f(active(f(active(f(mark(z0))))))), F(mark(f(f(z0)))), MARK(f(f(z0))))
MARK(f(f(g(z0)))) → c1(ACTIVE(f(active(f(active(g(z0)))))), F(mark(f(g(z0)))), MARK(f(g(z0))))
MARK(f(f(h(z0)))) → c1(ACTIVE(f(active(f(active(h(mark(z0))))))), F(mark(f(h(z0)))), MARK(f(h(z0))))
MARK(f(f(x0))) → c1(F(mark(f(x0))))
MARK(f(g(x0))) → c1(ACTIVE(f(g(x0))), F(mark(g(x0))), MARK(g(x0)))
MARK(f(g(x0))) → c1(F(mark(g(x0))), MARK(g(x0)))
S tuples:
G(mark(z0)) → c6(G(z0))
G(active(z0)) → c7(G(z0))
K tuples:
F(mark(z0)) → c4(F(z0))
H(mark(z0)) → c8(H(z0))
H(active(z0)) → c9(H(z0))
F(active(z0)) → c5(F(z0))
Defined Rule Symbols:
active, mark, f, g, h
Defined Pair Symbols:
F, G, H, ACTIVE, MARK
Compound Symbols:
c4, c5, c6, c7, c8, c9, c, c1, c2, c3, c1, c1
(33) CpxTrsMatchBoundsProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 0.
The certificate found is represented by the following graph.
Start state: 2277
Accept states: [2278, 2279, 2280, 2281, 2282]
Transitions:
2277→2278[active_1|0]
2277→2279[mark_1|0]
2277→2280[f_1|0]
2277→2281[g_1|0]
2277→2282[h_1|0]
(34) BOUNDS(O(1), O(n^1))